Score	•
DCOLC	

Name:

Section (circle one): 1 2 3 4 5 6 Team (circle one): a b c d e f

SM122 - Test #4- Eart 2010

Closed book. Calculators/one note sheet allowed. Properly label all graphs. Box/circle your final answer. YOU MUST SHOW ALL WORK FOR FULL CREDIT.

1. (20 points) Given the following points: P (1, 0, -2), Q (1, 1, 1), R (0, -3, -1), complete the table below (do not use calculator):

\overrightarrow{PQ}	(0, 1, 3)	PQ	VIO	$\overrightarrow{PQ} \cdot \overrightarrow{PR}$	0
\overrightarrow{QP}	(05-15-3)	PR	III	$\overrightarrow{QP} \cdot \overrightarrow{QR}$	10
\overrightarrow{PR}	(-11-3.1)	RQ	$\sqrt{21}$	$\overrightarrow{RQ} \cdot \overrightarrow{RP}$	1)
\overrightarrow{RP}	(113,-1)	$2\overrightarrow{PQ}$	(92,6)	$\overrightarrow{PQ} \times \overrightarrow{PR}$	(10,-3,1)
QR	(-1,-4,-2)	$\overrightarrow{QP} + \overrightarrow{QR}$	4-1,5-5)	$\overrightarrow{QP} \times \overrightarrow{QR}$	⟨-10, 3, -1⟩
\overrightarrow{RQ}	(1, 4, 2)	$3\overrightarrow{QR} + 4\overrightarrow{RP}$	(1,0,-10)	$\overrightarrow{RQ} \times \overrightarrow{RP}$	(101+3-1)

Fill in answers carefully! Highlighted data in this table can be used in problems 2-4.

TOP OR	0 -1	<i>→ → → → → → → → → →</i>	K -3	Ra (i 1	4 Z 3-3	
	10)3					1+371	

n this table

Name:	<u> </u>	

- 2. Answer the following:
 - a. (5 points) Find the angle between the vectors \overrightarrow{QR} and \overrightarrow{QP} ?

b. (5 points) Find the area of triangle PQR using cross products.

c. (5 points) Calculate $\overrightarrow{PQ} \cdot (\overrightarrow{PQ} \times \overrightarrow{PR})$ and $\overrightarrow{PR} \cdot (\overrightarrow{PQ} \times \overrightarrow{PR})$. Explain your results.

d. (5 points) Is triangle PQR a right triangle? Why?

- 3. Find:
 - a. (5 points) The vector equation of line connecting points P and Q.

b. (5 points) The equation of a plane containing points P, Q and R (write equation in form ax + by + cz = d)

$$=) 10(x-1)-3(y-1)+(2-1)=0$$

$$=) 10(x-3y+2=8)$$

- 4. Find the following:
 - a. (5 points) The scalar projection of \overrightarrow{QR} onto \overrightarrow{QP} $\left(comp_{\overrightarrow{OP}}\overrightarrow{QR}\right)$.

b. (5 points) The vector projection of \overrightarrow{QP} onto \overrightarrow{QR} $\left(proj_{\overrightarrow{QR}}\overrightarrow{QP}\right)$

Name:	

5. (10 points) Somewhere on the Severn River: A YP sets up a tow line to rescue a floundering sailboat. The towline forms a 22.5 degree angle with the water line. A total of 73 lbs of force is required to tow the sail boat. How much work is done in towing the vessel 1200 feet?

 $W = \vec{F} \cdot \vec{D} = 743\cos(22.5)(1200)$ $+ 73\sin(22.5)(0)$ = 80931.8 + 105

6. (10 points) Somewhere in the South Pacific: Your ship is traveling on a course 015 at a speed of 20 knots. You are tracking a contact whose relative course is 105 at a speed of 5 knots. Use vector addition to find the true course/speed

of the contact.

Hint: $\overrightarrow{True\ Cse} = \overrightarrow{Ship\ Cse} + \overrightarrow{Relative\ Cse}$

SHIP= (20 cos(75), 20 sin(75)) + REL = (5 cos6 18), 5 sin (-15)

True = 210,000, 18,021)

magnitude = $(10.00^2 + 18.02)^2 = 20.61$ kts direction = $tain'(\frac{1800}{10.00}) = 60.97^\circ$

concert to course

Le 90-60,97